Tag: biosignature

Atmospheric Pollution Could Signal Advanced Extraterrestrial Civilization

Article by Amit Malewar                                     February 11, 2021                                        (techexplorist.com)

• Astronomers have detected over 4,000 planets orbiting other stars. Some of these exoplanets have conditions suitable for life. Since exoplanets are so distant, scientists cannot look for signs of life or civilization by sending spacecraft to these distant worlds. The presence of a combination of gases like oxygen and methane in a planet’s atmosphere could be a sign of life or ‘biosignature’. Likewise, a sign of technology (ie: pollution) on an exoplanet, called a ‘technosignature’, could be the byproduct of an industrial process.

• A new NASA research study examines nitrogen dioxide (NO2) as a possible technosignature. “On Earth, about 76 percent of NO2 emissions are due to industrial activity,” says Giada Arney, co-author of the paper at NASA Goddard. “Since NO2 is also produced naturally, scientists will have to carefully analyze an exoplanet to see if there is an excess that could be attributed to a technological society.”

• In this study, scientists used computer modeling to predict whether NO2 pollution would produce a detectable signal. Atmospheric NO2 strongly absorbs certain colors (wavelengths) of visible light, which can be seen by observing the light reflected from an exoplanet as it orbits its star. They found that a civilization on an Earth-like planet orbiting a Sun-like star, producing the same amount of NO2 as ours could be detected up to about 30 light-years away using a future large NASA telescope. One light-year is the distance light travels in a year, almost 6 trillion miles. Our galaxy is about 100,000 light-years across.

• The study group also found that cooler and far more common stars than our Sun, such as K and M-type stars, will deliver a stronger, more easily detected NO2 signal. “If we observe NO2 on another planet, we will have to run models to estimate the maximum possible NO2 emissions one could have just from non-industrial sources” to calculate the industrial-sourced NO2, said Arney.

• Jacob Haqq-Misra, a co-author of the paper at the Blue Marble Institute of Science, Seattle, Washington, noted that, “Other studies have examined chlorofluorocarbons (CFCs) as possible technosignatures. CFCs were manufactured chemicals used as refrigerants until they were phased out because of their role in ozone depletion. CFCs are also a powerful greenhouse gas that could terraform a planet like Mars by providing additional warming from the atmosphere.” They would be an obvious technosignature since CFCs aren’t produced naturally, as far as we know. It is likely that NO2 would be more prevalent, by comparison, as a general byproduct of any combustion process.”

• This work was funded by NASA Goddard’s Sellers Exoplanet Environments Collaboration and the NASA Exobiology program. supported by NASA’s Planetary Science Division’s Research Program. This work was performed as part of NASA’s Virtual Planetary Laboratory through the NASA Astrobiology Institute and by the NASA Astrobiology Program as part of the Nexus for Exoplanet System Science (NExSS) research coordination network.

[Editor’s Note]    This article proves that NASA is just as complicit as the more obvious deep state organizations, such as SETI, in spending a ton of money and publicity to “search” for extraterrestrial life when it is right under (above) our noses. They trot out highly credentialed establishment scientists to spout a bunch of technical jargon about how they are looking for this ‘techosignature’ or that ‘biosignature’ looking for evidence of a habitable or technologically advanced civilization. Think of all of the time and effort – and deception – that our society will save and redirect once we have full disclosure of the long-standing presence of advanced extraterrestrial beings that have been interacting with our secret space programs for many decades. We already have the answers to all of the questions that deep state scientists continue to dwell on, solely for the theatrics of making average people think that smart people are doing everything they can to detect life beyond this Earth, thereby promoting the outrageous lie that humanity here on Earth is the only intelligent life that we have found in the universe.

 

      Jacob Haqq-Misra

Nitrogen dioxide is part of a group of gaseous air pollutants produced due to road traffic and other fossil fuel combustion processes. In

                        Giada Arney

the lower atmosphere (about 10 to 15 kilometers or around 6.2 to 9.3 miles), NO2 from human activities dominate compared to non-human sources. Therefore, observing NO2 on a habitable planet could potentially indicate the presence of industrialized civilization.

Until now, astronomers have detected over 4,000 planets orbiting other stars. Some of these planets are habitable; some have conditions suitable for life. Since exoplanets are so distant, scientists cannot look for signs of life or civilization by sending spacecraft to these distant worlds.

The presence of a combination of gases like oxygen and methane in the atmosphere could be a sign of life or biosignature. Likewise, a sign of technology on an exoplanet, called a techno signature, could be what’s considered pollution here on Earth — the presence of a gas that’s released as a byproduct of an overall industrial process, such as NO2.

A new NASA research suggests that we might detect advanced extraterrestrial civilization using its atmospheric pollution. This study is the first time NO2 has been examined as a possible technosignature.

Jacob Haqq-Misra, a co-author of the paper at the Blue Marble Institute of Science, Seattle, Washington, said, “Other studies have examined chlorofluorocarbons (CFCs) as possible technosignatures, which are industrial products that were widely used as refrigerants until they were phased out because of their role in ozone depletion. CFCs are also a powerful greenhouse gas that could terraform a planet like Mars by providing additional warming from the atmosphere. As far as we know, CFCs are not produced by biology, so they are a more obvious technosignature than NO2. However, CFCs are particular manufactured chemicals that might not be prevalent elsewhere; NO2, by comparison, is a general byproduct of any combustion process.”

In this study, scientists used computer modeling to predict whether NO2 pollution would produce a practical signal to detect with current and planned telescopes.
Atmospheric NO2 strongly absorbs some colors (wavelengths) of visible light, which can be seen by observing the light reflected from an exoplanet as it orbits its star. They found that for an Earth-like planet orbiting a Sun-like star, a civilization producing the same amount of NO2 as ours could be detected up to about 30 light-years away with about 400 hours of observing time using a future large NASA telescope observing at visible wavelengths.

READ ENTIRE ARTICLE

 

FAIR USE NOTICE: This page contains copyrighted material the use of which has not been specifically authorized by the copyright owner. ExoNews.org distributes this material for the purpose of news reporting, educational research, comment and criticism, constituting Fair Use under 17 U.S.C § 107. Please contact the Editor at ExoNews with any copyright issue.

New Evidence for Methane a Sign of Extraterrestrial Life

Article by Sarah Kahle                                       February 10, 2021                                       (dailyuw.com)

• Scientists know that methane is produced two ways: first by living biological microbes converting carbon monoxide into methane, and second by volcanos and deep sea hydrothermal vents. A biologically active exoplanet – the kind that astronomers search star systems for – could be detected by its abundance of methane.

• The James Webb Space Telescope (pictured above) is set to launch October 2021, and will replace the aging Hubble telescope in space. The Webb telescope is particularly adept at detecting atmospheric methane on distant exoplanets.

• A team led by UW postdoctoral student Nick Wogan set out to determine whether volcanic gas emissions on terrestrial exoplanets were abundant enough to disguise any biologically produced methane, and why an abundance of methane might be a potential indication of life. “We wanted to understand whether if we look at another planet, if we see methane there, is that because of life, or is that because of some weird volcano that also produces methane?” Wogan said. The team ran many combinations of simulations that modeled a wide range of volcanic chemistries possible for a terrestrial planet.

• The researchers found that while volcanic activity did produce methane, they weren’t capable of producing abundances anywhere near the level of biogenic methane. Further, if an abundance of methane in an atmosphere did come from volcanic activity, it would be indicated by an abundance of carbon monoxide as well, which the telescopes can detect.

• Therefore, the detection of proportionately large amount of methane in an exoplanet’s atmosphere might indeed be an indication that Earth-like organisms exist there. Large amounts of oxygen-rich gases, such as carbon dioxide and water vapor, alongside the methane would strengthen the possibility of a life-supporting biosignature. Says Wogan, “Really, our best shot of finding evidence of life on another planet is probably seeing the combination of methane and carbon dioxide.”

• Another indication of methane-producing bacteria or other similar lifeforms would be a proportionately low level of carbon monoxide which is consumed and converted by bacteria.

• The research group’s findings will be particularly helpful to astronomers analyzing exoplanetary atmospheres with the James Webb Space Telescope, and may be instrumental in finding extraterrestrial methane biosignatures.

 

                 Nick Wogan

A team led by UW postdoctoral student Nick Wogan has published a paper explaining why an abundance of methane in the atmosphere of an exoplanet (any planet orbiting a star other than the Sun) might be a potential indication of life.

Scientists typically search for molecular oxygen as an indication of life (or of conditions favorable to life) on other planets, but unfortunately, the James Webb Space Telescope, set to launch October 2021, isn’t well equipped to detect it in the atmospheres of faraway planets. The new telescope, however, intended to replace the aging Hubble, is particularly adept at detecting atmospheric methane and carbon dioxide abundances.

During the Archean, an eon early in Earth’s history, the first microbes developed and began to convert carbon monoxide into methane. This process continues today. As a result, methane began to build up in the atmosphere and has remained as an indication of biologic activity on Earth ever since.

However, life is not the only process we know of that can produce methane. Volcanism, deep sea hydrothermal vents, and meteor impacts can all generate methane as well. Wogan set out to determine whether volcanic gas emissions on terrestrial exoplanets were abundant enough to disguise any biologically produced methane.

READ ENTIRE ARTICLE

 

FAIR USE NOTICE: This page contains copyrighted material the use of which has not been specifically authorized by the copyright owner. ExoNews.org distributes this material for the purpose of news reporting, educational research, comment and criticism, constituting Fair Use under 17 U.S.C § 107. Please contact the Editor at ExoNews with any copyright issue.

Ariel’s Search For Extraterrestrial Life

Article by Giovanni Mussini                                 November 30, 2020                                      (oxfordstudent.com)

• The European Ariel space telescope (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) has been given the go-ahead for launch in 2029. Intended to map the atmospheres and chemical environments of distant exoplanets, the Ariel spacecraft’s search range will target hundreds of planets in the hotter Goldilocks zones in order to build a standard model of atmospheres based on the attributes of its host star and planetary environments.

• Different atmospheric components imprint distinctive patterns on the starlight beaming through. While not conducive to life itself, planets having an “atmospheric cauldron” that can circulate freely allows Ariel to capture more representative spectral signatures to create a standard model.

• The presence of unique ‘biosignatures’ arise due to the unique self-organizing properties of life. But at the same time, anomalies are unlikely to be spectacular or self-evident. Take Venus for example. Venus is a planetary inferno bathed in sulphuric acid rains, with a mean surface temperature high enough to melt lead. The biosignature of phosphine – a chemical created by living organisms – was detected in the cooler high-altitude Venusian clouds. But it is uncertain whether the presence of phosphine is due to biological activity, exotic abiotic chemistries, or a blip in the data.

• Time and again, attempts to map molecular pathways to life from simple organics have failed. Promising places – such as deep-sea hydrothermal vents – have proven an unlikely starting point for biology. The necessary interdependence of proteins, membranes, and nucleic acids may require simultaneous assembly, rather than in a stepwise fashion. Across the cosmos, the least unlikely places for spontaneous life to occur might be mineral-rich ephemeral pools bombarded by UV radiation. This is bad news for life. Temperate gas giants, oceanic super-Earths, and promising icy moons would all be ruled out. Perhaps biology really needs a planet like ours to get started: rocky, temperate, and tectonically active, with emerging landmasses. Places like these probably do exist, dotting the spiral arms of our galaxy.

• If the history of the Earth is any guide, evolution may rise to the challenges of alien worlds where there is living material to work from in the first place. Even on Venus, where balmy oceans existed as recently as 700 million years ago, life may have escaped the planet’s descent into a greenhouse nightmare by migrating to the higher atmosphere. As robotic emissaries and telescopic eyes return troves of data on far-flung worlds, sensational discoveries may come. But we are probably in for a long wait.

 

After years in the pipeline, the Ariel space telescope has been given the go-ahead for launch in 2029. This spacecraft is the brainchild of a cooperative European endeavour to map the atmospheres and chemical environments of far-flung worlds. If all goes well, Ariel will bring planetary science out of the solar system, and into uncharted territory. However, alien hunters may have to keep their enthusiasm in check – for now.

Ariel will peer at a range of exoplanets, but its focus will be on worlds baked by their home stars at over 320 ºC. By all measures, these are extremely unlikely abodes for life. Even so, the detection technique available to Ariel makes them attractive targets.

The telescope will search for faint chemical fingerprints as planets transit in front of their star. By only soaking up particular wavelengths, different atmospheric components imprint distinctive patterns on the starlight beaming through. The closer a planet is to its star, the more frequent the transits and the opportunities to carry out observations. Another perk of closely orbiting hellish worlds is that they wear their atmospheric makeup on their sleeve. Whereas gases may sink or coalesce into clouds on cooler planets, in an atmospheric cauldron they can circulate freely, allowing Ariel to capture more representative spectral signatures.

Ariel’s predecessors had to split their focus between probing exoplanetary atmospheres and other tasks. Instead, the ESA spacecraft will be solely dedicated to this endeavour, broadening the search to an unprecedented number of targets – hundreds of them. This is a cause for excitement. By gathering data en masse, Ariel will build towards something that has been sorely lacking in the quest for living worlds: a standard model of how atmospheres arise based on their host star and planetary environments. Understanding what is in line with this model, and what is not, may help scientists home in on genuine anomalies.

READ ENTIRE ARTICLE

 

FAIR USE NOTICE: This page contains copyrighted material the use of which has not been specifically authorized by the copyright owner. ExoNews.org distributes this material for the purpose of news reporting, educational research, comment and criticism, constituting Fair Use under 17 U.S.C § 107. Please contact the Editor at ExoNews with any copyright issue.

Inside The Search For Another Habitable Planet Within 100 Light Years Of Earth

Listen to “E183 Inside The Search For Another Habitable Planet Within 100 Light Years Of Earth” on Spreaker.

Article by Jamie Carter                             November 25, 2019                               (forbes.com)

• The Habitable Exoplanet Hunting Project is a global attempt to discover potentially habitable exoplanets within 100 light years, involving a network of over 25 amateur astronomy observatories around the globe. It will focus on ten stars within 100 light years of Earth, all of which have confirmed transiting exoplanets within the so-called “habitable zone”.

• The exoplanet known as Kepler 442b, which orbits a K-type star and could be even more habitable than Earth. M-type stars, or ‘red dwarfs’, are small, cool stars that are impossible to see with the naked eye, but they are by far the most common type of star in our region of the Milky Way. G, K and M-type stars are “the stars that are most likely to host exoplanets with water on their surface because they don’t flare,” says Alberto Caballero, an amateur astronomer at The Exoplanets Channel and the coordinator of the ‘Habitable Exoplanet Hunting Project’. “If a star flares, it can damage the atmosphere of the exoplanets.”

• The ideal exoplanet is a dense and rocky “super Earth” planet, almost seven times bigger than Earth, called LHS 1140 b, orbiting within the habitable zone of the red dwarf star LHS 1140 about 40 light years distant in the constellation of Cetus. Three other prime candidates would be:
Proxima Centauri b – an exoplanet orbiting an M-type red dwarf star 4.24 light years away in the constellation of Centauri;
Tau Ceti e – an exoplanet orbiting an M-type red dwarf star 11.9 light years away in the constellation of Cetus;
Teegarden b -an exoplanet orbiting an M-type red dwarf star 12 light years away in the constellation of Aries.

• Tau Ceti e is a “super Earth” exoplanet almost four times the mass of Earth. It is so massive that you can see Ceti in the constellation Cetus with the naked eye, level with Orion’s Belt in the northern hemisphere.

• The Project has been careful to ignore stars that have Jupiter-sized gas giant exoplanets in their habitable zones unless the star is so big that it may not adversely affect other exoplanets in the star’s orbit. “We’re trying to monitor the stars 24/7 for about two months,” says Caballero, “so it’s easier for us if we focus on M-type stars because any exoplanets would have really short orbital periods. But the most ideal ones are K-type stars.”

• NASA’s orbiting space telescope, the Transiting Exoplanet Survey Satellite or ‘TESS’ has already found 29 confirmed exoplanets. Caballero says, “So far (TESS has) not detected any potentially inhabited planets, but it’s only just starting on the northern hemisphere.” In the long term, Caballero thinks that studying an exoplanet’s ‘biosignature’ from its light spectrum with better instruments will yield the most potentially habitable exoplanets. Says Caballero, “[I]t’s all about having better technology.”

[Editor’s Note]  The Habitable Hunting Project might need to strike Proxima b off of their list. In March 2018, the Cerro Tololo Inter-American Observatory in the Chilean Andes, reported that the red dwarf star, Proxima Centauri, fired off a powerful “superflare” which could be seen from the Earth. (see Space.com article here) It briefly boosted the star’s brightness by a factor of 68. The astronomy team noted that “life would struggle to survive in the areas of Proxima b exposed to these flares.”

 

The search for extraterrestrial life is easily the most profound question in modern astronomy, but it’s hampered by a lack of both technology and time.

Is life possible beyond the solar system? If we’re ever to find out, we must study and categorise the stars to answer this one, simple question: if we had a spaceship we could send to the nearest Earth-like planet, which one would we send it to?

            Alberto Caballero

When astronomers find exoplanets, they put them on a list marked “potentially habitable” or else use them as clues that habitable exoplanets may lurk in their star system. Most of them are exceptionally far away. So far we’ve found three close exoplanets that orbit within a star’s so-called “habitable zone” where liquid water could exist on its surface.

If astronomers had to choose a planet in another star system to send a spaceship, these three would be prime candidates:

• Proxima Centauri b: an exoplanet orbiting an M-type red dwarf star 4.24 light years away in the constellation of Centauri.

• Tau Ceti e: an exoplanet orbiting an M-type red dwarf star 11.9 light years away in the constellation of Cetus.

• Teegarden b: an exoplanet orbiting an M-type red dwarf star 12 light years away in the constellation of Aries.

Where will we most likely find others? Though the vast majority of star systems remain unexplored, we know of plenty that contain planets not in the star’s habitable zone. These star systems are surely the best places to look.

Cue the Habitable Exoplanet Hunting Project, a global attempt attempt to discover potentially habitable exoplanets within 100 light years, and involving over 25 observatories.

What is the Habitable Exoplanet Hunting Project?

It’s a network of amateur astronomy observatories around the globe—from the U.S. and Uzbekistan to South Africa and Australia—that is studying 10 stars within 100 light years for signs of new, as yet unfound exoplanets. All of the stars that will be studied already have confirmed transiting exoplanets outside the so-called “habitable zone”. “We’ve chosen observatories in deserts or high regions or mountains because weather is always the main problem with projects like this,” says Alberto Caballero, an amateur astronomer at The Exoplanets Channel and the coordinator of the Habitable Exoplanet Hunting Project. “But we will need to find more observatories in the southern hemisphere.”

READ ENTIRE ARTICLE

 

FAIR USE NOTICE: This page contains copyrighted material the use of which has not been specifically authorized by the copyright owner. ExoNews.org distributes this material for the purpose of news reporting, educational research, comment and criticism, constituting Fair Use under 17 U.S.C § 107. Please contact the Editor at ExoNews with any copyright issue.

Copyright © 2019 Exopolitics Institute News Service. All Rights Reserved.